Methylation analysis in patients with chronic myeloid leukemia in different medical institutions in Medellín
Keywords:
Leucemia mielogena crónica, metilación, progresión de la enfermedad, resistencia a medicamentosAbstract
Background: chronic myeloid leukemia (CML) is a chronic myeloproliferative neoplasm characterized by the presence of the Philadelphia chromosome. A specific treatment is designed as tyrosine kinase inhibitors (ITK's), which induces patients to have a hematologic, cytogenetic and molecular response. This disease is characterized by three clinical phases that result from the accumulation of genetic damage, both represented by point mutations and alterations in the karyotype; and epigenetic changes in genes such as ABL, OSCP1, PDLIM4, Npm2, ER and p15.
Objective: to describe the schemes of six gens in patients with chronic myeloid leukemia in different stages of the disease and treated with some ITK in two hospitals in Medellín.
Methods: a descriptive transversal study was conducted, in which 34 samples were collected at the convenience of patients with chronic myeloid leukemia (CML). To make the analysis of these samples methylation specific PCR was done.
Results: statistical differences in blood count data from both phases of the disease was found, a high frequency of methylated genes in accelerated phase was also found. p15 methylation, ABL, ER are independent of the stage of the disease. In patients treated with hydroxyurea, methylation of 100 % for OSCP1 and PDLIM4 genes was observed and this behavior was not observed in individuals treated with ITK'S. In patients who developed resistance to ITK's however was observed a higher percentage of methylation in genes OSCP1 and PDLIM4.
Conclusions: methylation in PDLIM4 and OSCP1 genes could be associated with poor prognosis possibly being associated with progression of chronic to accelerated phase and the development of resistance to ITK's.
DeCS: LEUKEMIA, MYELOGENOUS, CHRONIC, BCR-ABL POSITIVE; METHYLATION; PHILADELPHIA CHROMOSOME; HYDROXYUREA/therapeutic use; CROSS-SECTIONAL STUDIES.
Downloads
References
1. JW_Vardiman JV, Baccarani J MM. Thiele. Chronic myelogenous leukaemia, BCR-ABL1 positive In: Jaffe ES, Harris NL, Stein H, Vardiman JW, editors.World Health Organization (WHO) Classification of Tumours. Pathology & Genetics. Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC Press; 2001. p. 291-302.
2. Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Altekruse SF, et al, editors. SEER Cancer Statistics Review, 1975-2013 [Internet]. Bethesda: National Cancer Institute; 2016 Apr [cited 2016 May 12]. Available from: http://seer.cancer.gov/csr/1975_2013/.
3. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. Cancer Incidence and Mortality. GLOBOCAN [Internet]. 2012 [cited 2016 May 12]1(1):[about 8 p.]. Available from: http://globocan.iarc.fr/old/summary_table_sitehtml.asp?selection=12280&title=Leukaemia&sex=0&type=0&window=1&america=2&sort=3&submit=%C2%A0Execute accessed on 23/05/2016.
4. Höglund M, Sandin F, Simonsson B. Epidemiology of chronic myeloid leukaemia: an update. Ann Hematol. 2015;94(S2):241–7.
5. National cancer Institute. Chronic Myeloid Leukemia - SEER Stat Fact Sheets [Internet]. SEER Stat Fact Sheets: chronic Myeloid Leukemia (CML); 2016 [citado 2016 May 17]. Available from: http://seer.cancer.gov/statfacts/html/cmyl.html
6. Direccion de medicamentos y tecnologias en salud. Actuación admistrativa de la declaratoria de razones de interes público. Medellin: Universidad de Antioquia; 2016.
7. Cilloni D, Saglio G. Molecular pathways: BCR-ABL. Clin Cancer Res. 2012;18(4):930–7.
8. Huu NT, Yoshida H, Yamaguchi M. Overexpression of tumor suppressor protein OSCP1/NOR1 induces ER stress and apoptosis during development of Drosophila melanogaster. Am J Cancer Res [Internet]. 2015 Jan [2016 citado Feb 29];5(5):[about 11 p.]. Available from: http pmc/articles/PMC4497438/?report=abstract
9. Asimakopoulos FA, Shteper PJ, Krichevsky S, Fibach E, Polliack A, Rachmilewitz E, et al. ABL1 methylation is a distinct molecular event associated with clonal evolution of chronic myeloid leukemia. Blood. 1999 Oct 1;94(7):2452-60.
10. Issa J-PJ, Zehnbauer BA, Civin CI, Collector MI, Sharkis SJ, Davidson NE, et al. The Estrogen Receptor CpG Island Is Methylated in Most Hematopoietic Neoplasms. Cancer Res. 1996 Mar 1;56(5):973-7.
11. Hantschel O, Grebien F, Superti-Furga G. The growing arsenal of ATP-competitive and allosteric inhibitors of BCR-ABL. Cancer Res. 2012;72(19):4890-5.
12. Comert M, Baran Y, Saydam G. Changes in molecular biology of chronic myeloid leukemia in tyrosine kinase inhibitor era. Am J Blood Res. 2013 Jan;3(3):191-200.
13. Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD. Second generation inhibitors of BCR-ABL for the treatment of resistant chronic myeloid leukaemia. Nat Rev Cancer [Internet]. 2007 May [citado 2013 Nov 13];7(5):[about 12 p.]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17457302
14. Kimura S. [State-of-the-art management of CML in 2015 and future prospects]. Rinsho Ketsueki [Internet]. 2015 Oct [citado 2016 Nov 19];56(10):[about 9 p.]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26458439
15. Chen S, Sutiman N. Pharmacogenetics of drug transporters in modulating disposition and treatment outcomes in chronic myeloid leukemia & gastrointestinal stromal tumor patients. Pharmacogenomics. 2016;17(17):1941-55.
16. Dietrich D, Lesche R, Tetzner R, Krispin M, Dietrich J, Haedicke W, et al. Analysis of DNA Methylation of Multiple Genes in Microdissected Cells From Formalin-fixed and Paraffin-embedded Tissues. J Histochem Cytochem. 2009;57(5):477-89.
17. Baccarani M, Castagnetti F, Gugliotta G, Rosti G. A review of the European LeukemiaNet recommendations for the management of CML. Ann Hematol [Internet]. abril de 2015 [citado 2016 Apri 1];94 Suppl 2:[about 7 p.]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25814080
18. Furtado VF, Santos GR, de Carvalho DS, Staziaki PV, Pasquini R, Funke VAM. Accelerated phase chronic myeloid leukemia: evaluation of clinical criteria as predictors of survival, major cytogenetic response and progression to blast phase. Rev Bras Hematol Hemoter. 2015 Ene;37(5):341-7.
19. Jelinek J, Gharibyan V, Estecio MRH, Kondo K, He R, Chung W, et al. Aberrant DNA methylation is associated with disease progression, resistance to imatinib and shortened survival in chronic myelogenous leukemia. PLoS One. 2011;6(7):e22110.
20. Bodoor K, Haddad Y, Alkhateeb A, Al-Abbadi A, Dowairi M, Magableh A, et al. DNA hypermethylation of cell cycle (p15 and p16) and apoptotic (p14, p53, DAPK and TMS1) genes in peripheral blood of leukemia patients. Asian Pacific J Cancer Prev. 2014;15(1):75-84.
21. Gómez Gómez M, Danglot Banck C, Vega Franco L. Sinopsis de pruebas estadísticas no paramétricas. Cúando usarlas. Rev Mex Pedriatría. 2003;70(2):91-9.
22. Preisler HD, Li B, Chen H, Fisher L, Nayini J, Raza A, et al. P15 INK4B gene methylation and expression in normal , myelodysplastic , and acute myelogenous leukemia cells and in the marrow cells of cured lymphoma patients. 2001;1589-95.
23. McCabe MT, Brandes JC, Vertino PM. Cancer DNA methylation: molecular mechanisms and clinical implications. Clin Cancer Res. 2009 Jun 15;15(12):3927-37.
24. Jiang D, Hong Q, Shen Y, Xu Y, Zhu H, Li Y, et al. The diagnostic value of DNA methylation in leukemia: a systematic review and meta-analysis. PLoS One. 2014 Jan;9(5):e96822.
25. Berrio Carvajal D, Acevedo Toro PA. Frecuencia de la mutación T315I y su relación con la resistencia a inhibidores tirosina kinasa en pacientes con leucemia mieloide crónica, en Medellín. 2015. Medellin: Universidad de Antioquia; 2016.
26. Elias MH, Baba AA, Husin A, Sulong S, Hassan R, Sim GA, et al. HOXA4 gene promoter hypermethylation as an epigenetic mechanism mediating resistance to imatinib mesylate in chronic myeloid leukemia patients. Biomed Res Int. 2013 Jan;2013:129715.
27. Yang H, Liang H, Yan J, Tao R, Hao S, Ma L. Down-regulation of hematopoiesis master regulator PU.1 via aberrant methylation in chronic myeloid leukemia. Int J Hematol [Internet]. 2012 Jul [citado 2013 Oct 25];96(1):[about 9 p.]. Available from: http http://www.ncbi.nlm.nih.gov/pubmed/22674382
28. Nishioka C, Ikezoe T, Yang J, Udaka K, Yokoyama A causes epigenetic alterations of PTEN gene via upregulation of DNA methyltransferases and polycomb group proteins. Blood Cancer J. 2011 Dec;1(12):e48.

Published
How to Cite
Issue
Section
License
Copyright: Camagüey Medical Archive Magazine, offers immediately after being indexed in the SciELO Project; Open access to the full text of the articles under the principle of making available and free the research to promote the exchange of global knowledge and contribute to a greater extension, publication, evaluation and extensive use of the articles that can be used without purpose As long as reference is made to the primary source.
Conflicts of interest: authors must declare in a mandatory manner the presence or not of conflicts of interest in relation to the investigation presented.
(Download Statement of potential conflicts of interest)
The Revista Archivo Médico de Camagüey is under a License Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 International (CC BY 4.0).
This license allows others to distribute, to mix, to adjust and to build from its work, even for commercial purposes, as long as it is recognized the authorship of the original creation. This is the most helpful license offered. Recommended for maximum dissemination and use of licensed materials. The full license can be found at: https://creativecommons.org/licenses/