Mycobacterium tuberculosis vaccine candidates: an update on the topic

Authors

  • Kirene Torres Tellez Universidad de Ciencias Medicas de Camaguey
  • Zaddys Ruiz Hunt
  • Lidyce Quesada Leyva

Abstract

Background: the effectiveness of the current vaccine against tuberculosis is useful to counteract the lung forms of the disease. Its reactivation is variable or hardly efficient, which calls for an urgent search for new prophylactic alternatives against the infection. The progress on obtaining new drugs and vaccine depends largely on knowledge about the characteristics of the microorganism as well as immune response according to the pathogenic agent.
Objective:
to carry out an updated revision of vaccine candidates against Mycobacterium tuberculosis in medical databases.
Methods:
a bibliographic review of 60 articles published in databases was conducted. Among them, 40 were selected from the last decade, in order to undertake the research. Most studied subjects were analyzed regarding the pathogenic agent, Mycobacterium tuberculosis, vaccine candidate, and action mechanisms about the immune system. Types of vaccines and particular therapeutic potential for Mycobacterium tuberculosis apart from assessing the immunologic reaction with respect to vaccine candidate were revised in depth.
Conclusions: simulation of the infection and events that come after during natural immunity without causing the disease are essential conditions of a classical vaccine.
DeCS:MYCOBACTERIUM TUBERCULOSIS; TUBERCULOSIS VACCINES; NOXAE; IMMUNITY, ACTIVE; REVIEW LITERATURE AS TOPIC.

Downloads

Download data is not yet available.

Author Biography

Kirene Torres Tellez, Universidad de Ciencias Medicas de Camaguey

CENIPBI

References

1. Herrera León L, Pozuelo Díaz R, Molina Moreno T, Valverde Cobacho A, Saiz Vega P, Jiménez Pajares MS. Aplicación de métodos moleculares para la identificación de las especies del complejo Mycobacterium tuberculosis. Enferm Infecc Microbiol Clin [Internet]. Nov 2009 [citado 12 Jun 2016];27(9):[aprox. 12 p.]. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=3658811

2. Parida SK, Kaufmann SH. Novel tuberculosis vaccines on the horizon. Curr Opin Immunol. 2010 Jun;22(3):374-84.

3. Dirección Nacional de Registros Médicos y Estadísticas de Salud. Cuba. Anuario estadístico de salud 2009. La Habana: MINSAP; 2010. Comportamiento de la tuberculosis en Cuba; p. 32.

4. Dirección Nacional de Registros Médicos y Estadísticas de Salud. Cuba. Anuario estadístico de salud 2010. La Habana: MINSAP; 2011. Comportamiento de la tuberculosis en Cuba; p. 22.

5. Brennan M, Stone M, Evans T. A rational vaccine pipeline for tuberculosis. Int J Tuberc Lung Dis. 2012 Dec;16(12):1566-73.

6. Chegou N, Heyckendorf J, Walzl G, Lange C, Ruhwald M. Beyond the IFN-γ horizon: biomarkers for immunodiagnosis of infection with Mycobacterium tuberculosis. Eur Respir J. 2014 May;43(5):1472-1486.

7. Mwaba P, McNerney R, Grobusch M, O'Grady J, Bates M, Zulma A, et al. Achieving STOP TB Partnership goals: perspectives on development of new diagnostics, drugs and vaccines for tuberculosis. Trop Med Int Health. 2011 Jul;16(7):819-27.

8. Hatherill M, Verver S, Mahomed H; Taskforce on Clinical Research Issues, Stop TB Partnership Working Group on TB Vaccines. Consensus statement on diagnostic end points for infant tuberculosis vaccine trials. 2012 Feb 15;54(4):493-501.

9. Kaboru B, Uplekar M, Lönnroth K. Engaging informal providers in TB control: what is the potential in the implementation of the WHO Stop TB Strategy? A discussion paper. World Health Popul. 2011;12(4):5-13.

10. Pérez Arellano JL, Sánz Peláez O, Hernández Cabrera M, Moreno Maroto A. Situación actual y perspectivas clínicas de la tuberculosis. Problemas terapéuticos. Enf Emerg [Internet]. 2009 [citado 12 Jun 2016];7(1):[aprox. 9 p.]. Disponible en www.researchgate.net/profile/Michele_Hernandez-Cabrera/publication/255647480_Situacion_actual_y_perspectivas_clinicas_de_la_Tuberculosis_Problemas_terapeuticos/links/54bee0480cf28ad7e7196594

11. Abbas AK, Lichtman AH, Pober JS. Inmunología celular y molecular. 6ta ed. Barcelona: Elsevier; 2008.

12. Kumar M, Khan FG, Sharma S, Kumar R, Faujdar J, Sharma R, et al. Identification of Mycobacterium tuberculosis genes preferentially expressed during human infection. Microb Pathog. 2011 Jan;50(1):31-8.

13. Iseman MD, Heifets LB. Rapid Detection of Tuberculosis and Drug-Resistant Tuberculosis. N Engl J Med. 2006;355(3):1606-07.

14. van Ingen J, Boeree MJ, van Soolingen D, Iseman MD, Heifets LB, Daley CL. Are phylogenetic position, virulence, drug susceptibility and in vivo response to treatment in mycobacteria interrelated?. Infect Genet Evol. 2012 Jun;12(4):832-7.

15. van Ingen J, de Lange WC, Boeree MJ, Iseman MD, Daley CL, Heifets LB, et al. XDR tuberculosis. Lancet Infect Dis. 2011 Aug;11(8):585.

16. Gandhi NR. Extensively drug-resistant tuberculosis as a cause of death in patients coinfected with tuberculosis and HIV in a rural area of South Africa. Lancet. 2006;368(2):1575–80.

17. Walls G, Bulifon S, Breysse S, Daneth T, Bonnet M, Hurtado N, et al. Drug-resistant tuberculosis in HIV-infected patients in a national referral hospitalPhnom Penh, Cambodia. Glob Health Action [Internet]. 2015 Jan [citado 2015 Mar 16];8:[about 6 p.]. Available from: http://preview.ncbi.nlm.nih.gov/pubmed/25623609

18. Rada E , Aranzazu N , Convit J . Immune response of Hansen's disease. Invest Clin [Internet]. 2009 Dec [citado 2015 Mar 16];50(4):[about 15 p.]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20306725

19. Albuquerque RG, Okazaki KM, Hirotsu C, Tomimori J, Tufik S, Andersen ML. Sleep, Hansen's disease and the immune system - A not so harmonic triad. Med Hypotheses [Internet]. 2015 May [cited 2015 Jun 16];84(5):[about 4 p.]. Available from: http://preview.ncbi.nlm.nih.gov/pubmed/25686506

20. Aziz BA, Jeddane L, Ailal F, Benhsaien I, Mahlaoui N, Casanova JL, et al. Primary Immunodeficiency Diseases Worldwide: More Common than Generally Though. J Clin Immunol. 2013;33(1):1–7.

21. Jepsen DF, Range N, Praygod G, Jeremiah K, Aabye MG, Changalucha J, et al. The use of combined heart rate response and accelerometry to assess the level and predictors of physical activity in tuberculosis patients in Tanzania. Epidemiol Infect. 2014 Jun;142(6):1334-42.

22. Stifter SA, Feng CG. Interfering with Immunity: Detrimental Role of Type I IFNs during Infection. J Immunol [Internet]. 2015 [citado 2015 Jun 16];194(6):[about 10 p.]. Available from: http://www.jimmunol.org/content/jimmunol/194/6/2455.full.pdf

23. Olivares Arzuaga N, Vila Infiesta A, Moya Torres A, Sarmientos Ramírez ME, Acosta Domínguez A, Norazmi MN. Papel de los anticuerpos en la protección contra Mycobacterium tuberculosis. VacciMonitor [Internet]. 2006 [citado 16 Jun 2015];15(3):[aprox. 5 p.]. Disponible en: http://scielo.sld.cu/pdf/vac/v15n3/vac04306.pdf

24. Álvarez Cabrera N, Fernández Castillo S, Serpa Almaguer D, Serrano Hernández D, Zayas Vignier C, Cabrera Arias RA, et al. Avances en la caracterización de un proteoliposoma derivado de Mycobacterium bovis BCG como candidato vacunal contra la tuberculosis. Vaccimonitor [Internet]. Dic 2014 [citado 16 Mar 2015];23(3):[aprox. 6 p.]. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1025-028X2014000300005

25. Achkar JM, Casadevall A. Antibody-mediated immunity against tuberculosis: implications for vaccine development. Cell Host & Microbe. 2013 Mar;13(3):250-62.

26. Ai W, Yue Y, Xiong S, Xu W. Enhanced protection against pulmonary mycobacterial challenge by chitosan-formulated polyepitope gene vaccine is associated with increased pulmonary secretory IgA and gamma-interferon(+) T cell responses. Microbiol Immunol [Internet]. 2013 Mar [citado 2015 Mar 16];57(3):[about 11 p.]. Available from: http://onlinelibrary.wiley.com/doi/10.1111/1348-0421.12027/full

27. Kolibab K, Yang A, Steven CD, Waldmann TA, Perera L, Morris SL. Highly Persistent and Effective Prime/Boost Regimens against Tuberculosis That Use a Multivalent Modified Vaccine Virus Ankara-Based Tuberculosis Vaccine with Interleukin-15 as a Molecular Adjuvant. Clin Vaccine Immunol [Internet]. 2010 May [citado 2015 Mar 16];17(5):[about 8 p.]. Available from: http://cvi.asm.org/content/17/5/793.full.pdf+html

28. Shin DM, Jeon BY, Lee HM, Jin HS, Yuk JM, Song CH, et al. Mycobacterium tuberculosis Eis Regulates Autophagy, Inflammation, and Cell Death through Redox-dependent Signaling. PLoS Pathogens [Internet]. 2010 [citado 2015 Mar 16];6(12):[about 12 p.]. Available from: http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1001230

29. Kolibab K, Smithson SL, Rabquer B, Khuder S, Westerink MA. Immune response to pneumococcal polysaccharides 4 and 14 in elderly and young adults: analysis of the variable heavy chain repertoire. Infect Immun [Internet]. 2005 Nov [citado 2015 Mar 16];73(11):[about 11 p.]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1273876/.

30. Hernández Pando R. Nuevas vacunas contra Tb. Salud pública méx [Internet]. 2007 [citado 16 Mar 2015];49:[aprox. 6 p.]. Disponible en: http://www.redalyc.org/articulo.oa?id=10649079

31. Marrón González R. Potencial de los liposomas de Mycobacterium smegmatis como candidato vacunal frente a la tuberculosis [tesis]. La Habana: Universidad de Ciencias Médicas de La Habana; 2010.

32. SF Martin. Adaptation in the innate immune system and heterologous innate immunity. Cell Mol Life Sci [Internet]. 2014 Nov [citado 2015 Mar 16];71(21):[about. 15 p.]. Available from: http://link.springer.com/article/10.1007%2Fs00018-014-1676-2

33. Daniels K, Hatfield S, Welsh R, Brehm M. MHC basis of T cell-dependent heterologous immunity to arenaviruses. Virology [Internet]. 2014 Sep [citado 2015 Mar 16];0:[about. 4 p.]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4196705/ .

34. Nguyen LT, Borrero Maura R, Fernández Castillo S, Reyes Álvarez G, Pérez Arellano JL, García Santana MA, et al. Evaluation of the potential of Mycobacterium smegmatis as vaccine Candidate against tuberculosis by in silico and in vivo studies. Vaccimonitor. 2010 Apr;19(1):20-6.

35. Addine Ramírez B, Marrón González R, Calero Ramos R, Mirabal Sosa M, Ramírez de la Cruz JC, Sarmiento García ME, et al. In sílico identification of common epitopes from pathogenic mycobacteria. BMC Immunology [Internet]. 2013 [citado 2015 Mar 16];14(1):[about. 5 p.]. Available from:http:// bmcimmunol.biomedcentral.com/track/pdf/10.1186/1471-2172-14-S1-S6?site=bmcimmunol.biomedcentral.com

36. Valdés Hernández I, Echemendía Font M, Mederos Cuervo L, Valdivia Álvarez JA, Montoro Cardoso E. Aspectos relevantes del uso de Mycobacterium´habana´ como candidato vacunal contra la tuberculosis. Vaccimonitor. 2011 Dic;20(3):34-39.

37. Jae MY, Eun KJ. Host immune responses to mycobacterial antigens and their implications for the development of a vaccine to control tuberculosis. Clin Exp Vaccine Res [Internet]. 2014 Jul [citado 2015 Mar 16];3(2):[about. 18 p.]. Available from: http://synapse.koreamed.org/DOIx.php?id=10.7774/cevr.2014.3.2.155

38. Velásquez J. Tuberculosis extrapulmonar en niños. Neumol Pediatr [Internet]. Mar 2015 [citado 16 Mar 2015];10(4):[aprox. 9 p.]. Disponible en: http://www.neumologia-pediatrica.cl/PDF/2015104/tuberculosis-extrapulmonar.pdf

Published

2017-02-11

How to Cite

1.
Torres Tellez K, Ruiz Hunt Z, Quesada Leyva L. Mycobacterium tuberculosis vaccine candidates: an update on the topic. Arch méd Camagüey [Internet]. 2017 Feb. 11 [cited 2025 Jul. 31];21(1):116-30. Available from: https://revistaamc.sld.cu/index.php/amc/article/view/4598

Issue

Section

Review Articles