Endothelial function in patients with type II spinocerebellar ataxia

Authors

Abstract

Introduction: Endothelial function in patients with spinocerebellar ataxia type 2 allows us to evaluate the appearance of cardiovascular diseases in this type of patients from an earlier age.
Objective:
To characterize endothelial function in patients with spinocerebellar ataxia type 2
Methods:
An analytical case-control study was carried out in patients with spinocerebellar ataxia type 2 from June 2021 to June 2023 at the Vladimir Ilich Lenin Hospital in Holguín. The sample was 25 patients in the case group and 25 patients in the control group. They underwent carotid Doppler and flow vasodilation tests and were distributed according to the risk factors with the greatest association with endothelial dysfunction.
Results:
13 patients had endothelial dysfunction, eight (32 %) male and the majority in the age group of 41 to 50 years (33 %), 7 patients (28 %) had increased intima-media thickness. In 28 % of the total it was associated with increased intima media thickness in relation to atherosclerosis. The association with elevated cholesterol and triglyceride levels and obesity predominated, as well as increased intima-media thickness between 5 and 11 % higher than the control group. Male sex predominated (66.7%) in patients with non-atherosclerotic endothelial dysfunction. 66.6 % had an evolution time from 0 to 15 years after diagnosis.
Conclusions: The existence of endothelial dysfunction was demonstrated, both associated and not associated with atherosclerosis, suggesting a relationship between the ataxin 2 mutation and the increased probability of endothelial dysfunction in these patients.
DeCS: SPINOCEREBELLAR ATAXIAS; ATHEROSCLEROSIS; CARDIOVASCULAR DISEASES; RISK FACTORS; ATAXINS.

Downloads

Download data is not yet available.

References

1. Harding AE. The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. A study of 11 families, including descendants of the 'the Drew family of Walworth'. Brain [Internet]. 1982 [citado 8 julio 2022];105(Pt 1):1-28. Disponible en: https://pubmed.ncbi.nlm.nih.gov/7066668/

2. Velázquez-Pérez L, Rodríguez-Labrada R, García-Rodríguez JC, Almaguer-Mederos LE, Cruz-Mariño T, Laffita-Mesa JM. A comprehensive review of spinocerebellar ataxia type 2 in Cuba. Cerebellum [Internet]. 2011 [citado 8 julio 2022];10(2):18498. Disponible en: https://pubmed.ncbi.nlm.nih.gov/21399888/

3. Velázquez Pérez L, Cruz GS, Santos Falcón N, Almaguer Mederos LE, Escalona Batallan K, Rodríguez Labrada R; et al. Molecular epidemiology of spinocerebellar ataxias in Cuba: insights into SCA2 founder effect in Holguin. Neurosci Lett [Internet]. 2009 [citado 8 julio 2022];454(2):157-60. Disponible en: https://pubmed.ncbi.nlm.nih.gov/19429075/

4. Velázquez Pérez L, Rodríguez Labrada R, Cruz Rivas EM, Fernández Ruiz J, Vaca Palomares I, Lilia Campins J; et al. Comprehensive study of early features in spinocerebellar ataxia 2: delineating the prodromal stage of the disease. Cerebellum [Internet]. 2014[citado 20 octubre 2022];13(5):568-579.Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/?term=Comprehensive+study+of+early+features+in+spinocerebellar+ataxia+2%3A+delineating+the+prodromal+stage+of+the +disease

5. Velázquez Pérez L, Rodríguez Labrada R, Canales Ochoa N, Montero JM, Sánchez Cruz G, Aguilera Rodríguez R; et al. Progression of early features of spinocerebellar ataxia type 2 in individuals at risk: a longitudinal study. Lancet Neurol 2014[citado 20 noviembre 2022];13(5):482-489. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/?term=Progression+of+early+features+of+spinocerebellar+ataxia+type+2+in+individuals+at+risk%3A+a+longitudinal+study

6. Estrada R, Galarraga J, Orozco G, Nodarse A, Auburger G. Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies. Acta Neuropathol [Internet]. 1999 [citado 8 julio 2022]; 97(3):306-10. Disponible en: https://pubmed.ncbi.nlm.nih.gov/10090679/

7. Agarwal A, Pankaj, Faruq M, Garg A, Srivastava AK. Cognition in Trinucleotide Repeat Spinocerebellar Ataxias: A Review. Ann Indian Acad Neurol [Internet]. 2022 [citado 8 julio 2022]; 25(4):601-605. Disponible en: https://pubmed.ncbi.nlm.nih.gov/36211141/

8. Kim G, Nakayama L, Blum JA, Akiyama T, Boeynaems S, Chakraborty M; et al. Genome-wide CRISPR screen reveals v-ATPase as a drug target to lower levels of ALS protein ataxin-2. Cell Rep [Internet]. 2022 [citado 10 agosto 2022];41(4):111508. Disponible en: https://pubmed.ncbi.nlm.nih.gov/36288714/

9. Johnson SL, Tsou WL, Prifti MV, Harris AL, Todi SV. A survey of protein interactions and posttranslational modifications that influence the polyglutamine diseases. Front Mol Neurosci [Internet]. 2022 [citado 10 agosto 2022];15: 974167. Disponible en: https://pubmed.ncbi.nlm.nih.gov/36187346/

10. Velázquez Pérez L. Nueva era en las investigaciones e intervención sobre la ataxia espinocerebelosa tipo 2. Correo Científico Médico [Internet]. 2015 [citado 10 Ago 2022]; 19(4): 598-604. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1560-43812015000400001&lng=es.

11. Velázquez Pérez L, Rodríguez Labrada R, Cruz Rivas EM, Fernández Ruiz J, Vaca Palomares I, Lilia Campins J; et al. Comprehensive Study of Early Features in Spinocerebellar Ataxia 2: Delineating the Prodromal Stage of the Disease. Cerebellum [Internet]. 2014 [citado 8 julio 2022];13(5):568–579. Disponible en: https://pubmed.ncbi.nlm.nih.gov/24906824/

12. Montes-Brown J, Sánchez-Cruz G, García AM, Báez ME, Velázquez-Pérez L. Heart rate variability in type 2 spinocerebellar ataxia. Acta Neurol Scand [Internet]. 2010 [citado 8 julio 2022];122(5):329-35. Disponible en: https://pubmed.ncbi.nlm.nih.gov/20085558/

13. Montes Brown J, Estévez Báez M, Almaguer Mederos LE. Manifestaciones disautonómicas en sujetos presintomáticos y enfermos de ataxia espinocerebelosa tipo 2. Rev Mex Neuroci [Internet]. 2011 [citado 10 Ago 2022];12(2):76-81. Disponible en:

https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=44431.

14. Palacios S, Cygankiewicz I, Bayés de Luna A, Pueyo E, Martínez JP. Periodic repolarization dynamics as predictor of risk for sudden cardiac death in chronic heart failure patients. Sci Rep [Internet]. 2021 [citado 10 agosto 2022]; 11(1):20546. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34654872/

15. Klemens CA, Dissanayake LV, Levchenko V, Zietara A, Palygin O, Staruschenko A. Modulation of blood pressure regulatory genes in the Agtrap-Plod1 locus associated with a deletion in Clcn6. Physiol Rep [Internet].2022[citado 10 agosto 2022];10(15): e15417.Disponible en: https://pubmed.ncbi.nlm.nih.gov/35927940/

16. Ikram MK, Sim X, Jensen RA, Cotch MF, Hewitt AW, Ikram MA; et al. Four novel Loci (19q13, 6q24, 12q24, and 5q14) influence the microcirculation in vivo. PLoS Genet [Internet]. 2010 [citado 2022 Jul 8];6(10):e1001184. Disponible en:: https://pubmed.ncbi.nlm.nih.gov/21060863/

17. Kelly TN, Sun X, He KY, Brown MR, Taliun Galiano SA, Hellwege JN; et al. Insights From a Large-Scale Whole-Genome Sequencing Study of Systolic Blood Pressure, Diastolic Blood Pressure, and Hypertension. Hypertension [Internet]. 2022 [citado 22 diciembre 2022];79(8):1656-1667. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35652341/

18. Gobbi CA, Asbert P, Alba PB, Resk J, Dotto G, Demarchi M; et al. Marcadores subclínicos de aterosclerosis y factores de riesgo cardiovascular en artritis temprana. Rev Fac Cien Med Univ Nac Cordoba [Internet]. 2019 [citado 8 Jul 2022];76(3):174-179. Disponible en: https://revistas.unc.edu.ar/index.php/med/article/view/21610

19. Ugovšek S, Rehberger Likozar A, Finderle S, Poglajen G, Okrajšek R, Vrtovec B; et al. TNF-α Predicts Endothelial Function and Number of CD34+ Cells after Stimulation with G-CSF in Patients with Advanced Heart Failure. J Cardiovasc Dev Dis [Internet]. 2022 [citado 8 Jul 2022];9(8):281. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC9410381/

20. Yubero-Serrano EM, Fernandez-Gandara C, Garcia-Rios A, Rangel-Zuñiga OA, Gutierrez-Mariscal FM, Torres Peña JD; et al. Mediterranean diet and endothelial function in patients with coronary heart disease: An analysis of the CORDIOPREV randomized controlled trial. PLoS Med [Internet]. 2020 [citado 8 Jul 2022];17(9):e1003282. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32903262/

21. Padro T, Muñoz Garcia N, Badimon L. The role of triglycerides in the origin and progression of atherosclerosis. Clin Investig Arterioscler [Internet]. 2021 [citado 8 julio 2022];2:20-28. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34006350/

Published

2025-04-29

How to Cite

1.
Pérez-Guerrero JL, Roselló-Zayas I, Hidalgo-Pupo R, Pupo-Herrera L, Lachagtanerais-Popa E. Endothelial function in patients with type II spinocerebellar ataxia. Arch méd Camagüey [Internet]. 2025 Apr. 29 [cited 2025 Jul. 15];29:e10279. Available from: https://revistaamc.sld.cu/index.php/amc/article/view/10279

Issue

Section

Original Articles